Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Endocrinol ; 71(1)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37040537

RESUMO

The melanocortin-4 receptor (MC4R) plays a critical role in regulating energy homeostasis. Studies on obesogenic human MC4R (hMC4R) variants have not yet revealed how hMC4R maintains body weight. Here, we identified a signaling profile for obesogenic constitutively active H76R and L250Q hMC4R variants transfected in HEK293 cells that included constitutive activity for adenylyl cyclase (AC), cyclic adenosine monophosphate (cAMP) response element (CRE)-driven transcription, and calcium mobilization but not phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) activity. Importantly, the signaling profile included impaired α-melanocyte-stimulating hormone-induced CRE-driven transcription but not impaired α-melanocyte-stimulating hormone-induced AC, calcium, or pERK1/2. This profile was not observed for transfected H158R, a constitutively active hMC4R variant associated with overweight but not obesity. We concluded that there is potential for α-melanocyte-stimulating hormone-induced CRE-driven transcription in HEK293 cells transfected with obesogenic hMC4R variants to be the key predictive tool for determining whether they exhibit loss of function. Furthermore, in vivo, α-melanocyte-stimulating hormone-induced hMC4R CRE-driven transcription may be key for maintaining body weight.


Assuntos
Cálcio , alfa-MSH , Humanos , alfa-MSH/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Células HEK293 , AMP Cíclico/metabolismo , Obesidade , Adenilil Ciclases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...